/Users/cathy/Desktop/tau_mphys/install_instructions.txt Page 1 of 4
Saved: 5/17/12 12:01:06 PM Printed For: Cathy Burgdorf Rasco

This tar file contains the files and directory required to run the Tel-Aviv ... university (TAU) warm size-resolved cloud microphysics scheme within the KiD ... model.

If you find any problems or have any questions please feel free to contact Adrian Hill at adrian.hill@metoffice.gov.uk

Introduction

2

3

4 5 6

7 8

9

10

12 13 14

15 16 17

18

21

24

In this version of the TAU microphysics the cloud drop size distribution is divided into 34 bins with a radii range of 1.56 to 3200 microns and mass doubling from one bin to the next. The method of moments (Tzivion et al. 1987, JAS) is used to solve for mass and number concentration in each size bin that result from diffusional growth (Tzivion et al 1989, JAS), collision-coalescence and collisional breakup (Tzivion et al, 1987 and Feingold et al, 1989, JAS). Sedimentation is performed using a first-order upwind scheme. Aerosol are represented by a single prognostic variable that is assumed to be ammonium sulfate with a log-normal distribution (Stevens et al 1996, JAS).

The numerical methods and code in this module have been used in a variety of 2-D and 3-D dynamical frameworks to investigate a number of cloud microphysical problems. For example, drizzle production in marine Sc (Feingold et al, 1996), the dynamic and microphysical details of non-precipitating and precipitating marine Sc (Stevens et al, JAS, 1996 & 1998), the effect of drizzle on cloud optical depth and susceptibility (Feingold et al, JGR, 1997), the role of giant CCN in marine Sc, (Feingold et al, JAS, 1999), the role of giant CCN in cumulus (Yin et al, Atmospheric Research, 2000), turbulence, condensation and liquid water transport in non-precipitating marine Sc (Wang et al, JAS, 2003) and aerosol-cloud interactions (Feingold et al, GRL, 2005; Jiang et al, JGR, 2006; Xue and Feingold, JAS, 2006; Xue et al, JAS, 2008; Hill et al, JAS, 2009)

Contents TAU scheme tar file

In the zip file there are the following files and directories:

19 module mp tau bin.f90

20 - main bin model. This contains most of the routines for running the TAU model

22 module bin init.f90

- this contains routines that initialise the code variables for the TAU scheme, e.g. the routines in this module set-up the bin boundaries, aerosol and the collection kernels.

mphys_tau_bin_declare.f90

Saved: 5/17/12 12:01:06 PM Printed For: Cathy Burgdorf Rasco - declarations required for the bin model in the KiD model 27 28 mphys tau bin.f90 29 - this is the wrapper that couples the TAU schem to the 1D framework. 30 31 tau data 32 - directory containing the collision-coalescence and breakup kernels 33 34 35 Running the TAU scheme in KiD 36 37 38 Read the documentation for the KiD model and install the KiD model. 39 40 In the release version there is directory called "src", which contains all the source code for the KiD model and the released microphysics schemes. 41 42 - In src there is a dummy file "mphys_tau_bin.f90", replace this file with the mphys tau bin.f90 in this tar file 43 44 - Copy the module mp tau bin.f90, module bin init.f90, mphys tau bin declare.f90 files and tau data directory into src. 45 - In one of the namelists for a warm case (warm1 to 7) set the following 46 47 48 ! number of moments for each species 49 num h moments= 2,0,0,0,0 50 num h bins=34,1,1,1,151 ! Background values for eachmoment (assumed the same for all species) 52 mom init=0,0,0 53 54 it is important to make sure that mom init is set to 0 or the TAU model will crash or produce strange answers!! 55 56 Change the "!Aerosol Initialisation" section of the namelist to 57 ! Aerosol initialization 58 num aero moments=1,0,0 59 num aero bins=1 aero N init=100.e6, 0., 0 60 aero sig init=1.5, 0., 0 61 62 aero rd init=0.05e-6, 0, 0. 63 Where aero N init is the aerosol number conc (/m^3), aero rd init is the mean 64

radius of the aerosol distribution (m) and aero_sig_init is the standard deviation of the aerosol distribution. At present aerosol is only coded up to use number as this is all that is required. The aerosol distirbution of assumed to be a single mode log normal distribution.

```
66
        set
67
        mphys_scheme='tau bin'
68
69 Example namelists for the CU and Sc case are included in this package.
70
71 By making these changes the TAU model will run in the KiD model.
72
73 Other TAU specific parameters:
74
75 The general release of the KiD contains a module "switches bin.f90". The switches
    in this modules permit the user to select
76
77
        1 coll coal - switches on collision-coalescence
        1 break - switches on collisional breakup (only works is 1 coll coal=true)
78
        1 sed ult - true switches on ULTIMATE sedimetation, false uses first order
79
    upwind scheme
 •••
        (ULTIMATE sedimentation not available in present release, so switch does not
80
    work)
81
82 If l_coll_coal is false the model with simulate activation, cond/evap and
    sedimentation as a default
83
84 In "Switches.f90" there is the following switch
85
        l noadv aerosols
86
87
    - not used with the bin scheme
88
        1 fix aerosols
89 - if .true. aerosol will be constant throughout the simulation, i.e. no change
    due to microphysics or transport
90 - if .false. aerosol will be removed by activation and replenished following
    complete evaporation of a drop, and aerosol will be advected
91
92 The above should permit a user to run a variety of configurations of the TAU
    scheme in the KiD model.
93
94 If you find any problems or have any questions please feel free to contact
    adrian.hill@metoffice.gov.uk
95
96
97 Changes/fixes from tau release 1.1.489 to tau release 2.2.489 (30/04/12)
98
99
100 Modified the interface so that it will work with the KiD version 2, i.e. changed
    all declarations so TAU scheme can run in 1-D or 2-D
101
102 The TAU scheme, and the whole KiD model has been tested with ifort-12 and
    gfortran 4.4.5 on red hat linux in both debug mode with no optimisation and
    optimisation of -03. All these tests produced the same results irrespective of
```

```
102... compiler or optimisation
 103
 104
 105 Changes/fixes from tau release 1.1.489 to tau release 1.2.489 (07/01/10)
     -----
 106
 107
 108
     - Fixed a bug in the coupling between the TAU scheme and the KiD model (in
     mphys tau bin.f90).
 109
        In tau release 1.1.489, microphysics was being called for the lowest level.
 110
     This could be important if a simulation used a low resolution, as processes such
     as evaporation are not calculated.
 111
        This has been fixed in the interface (mphys tau bin.f90) by setting the
 112
    thermodynamic and microphysics variables that are passed into the TAU scheme a
     level higher before the call to, e.g. tau bin
 113
 114
        rhon(2:kkp)=rho(1:kkp-1)
 115
 116
        where rhon(2:kkp)is TAU density and rho(1:kkp-1) is the KiD density
 117
 118
        The values are set back following the call to tau bin
 119
     - Removed ULTIMATE sedimentation
 120
 121
 122
        Further testing has shown that this code is not stable for all cases, so it
    has been removed from this release. Once the code is stable we will issue an
    update with this code.
 123
        The switch for ULTIMATE sedimentation (1 sed ult) is still in switches bin
 124
    but it does nothing
 125
 126
 127 Changes/fixes from tau release 1.2.489 to tau release 1.3.489 (05/03/10)
     ______
 128
 129
 130 - Compiling with ifort 11.1 higlighted three divide by zero associated with array
    operations in the coupling between the KiD framework and the TAU scheme. These
    errors do not occur with ifort 10 and below when optimised, but they are still
    there. This version corrects these errors.
```